Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Pathogen recognition in compatible plant-microbe interactions.

Identifieur interne : 000950 ( Main/Exploration ); précédent : 000949; suivant : 000951

Pathogen recognition in compatible plant-microbe interactions.

Auteurs : Fabio Rezzonico [Suisse] ; Oliver Rupp [Allemagne] ; Johannes Fahrentrapp [Suisse]

Source :

RBID : pubmed:28743967

Descripteurs français

English descriptors

Abstract

Microbial infections in plant leaves remain a major challenge in agriculture. Hence an understanding of disease mechanisms at the molecular level is of paramount importance for identifying possible intervention points for their control. Whole-transcriptome changes during early disease stages in susceptible plant species are less well-documented than those of resistant ones. This study focuses on the differential transcriptional changes at 24 hours post inoculation (hpi) in tomato leaflets affected by three pathogens: (1) Phytophthora infestans, (2) Botrytis cinerea, and (3) Oidium neolycopersici. Grey mould (B. cinerea) was the disease that had progressed the most by 24 hpi, both in terms of visible symptoms as well as differential gene expression. By means of RNA-seq, we identified 50 differentially expressed tomato genes specifically induced by B. cinerea infection and 18 specifically induced by P. infestans infection at 24 hpi. Additionally, a set of 63 genes were differentially expressed during all three diseases when compared by a Bayesian approach to their respective mock infections. And Gene expression patterns were found to also depend on the inoculation technique. These findings suggest a specific and distinct transcriptional response in plant leaf tissue in reaction to B. cinerea and P. infestans invasion at 24 hpi, indicating that plants may recognize the attacking pathogen.

DOI: 10.1038/s41598-017-04792-5
PubMed: 28743967
PubMed Central: PMC5526865


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Pathogen recognition in compatible plant-microbe interactions.</title>
<author>
<name sortKey="Rezzonico, Fabio" sort="Rezzonico, Fabio" uniqKey="Rezzonico F" first="Fabio" last="Rezzonico">Fabio Rezzonico</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research Group Environmental Genomics and Systems Biology, Zurich University of Applied Sciences, Wädenswil, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Research Group Environmental Genomics and Systems Biology, Zurich University of Applied Sciences, Wädenswil</wicri:regionArea>
<wicri:noRegion>Wädenswil</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rupp, Oliver" sort="Rupp, Oliver" uniqKey="Rupp O" first="Oliver" last="Rupp">Oliver Rupp</name>
<affiliation wicri:level="1">
<nlm:affiliation>Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen</wicri:regionArea>
<wicri:noRegion>Giessen</wicri:noRegion>
<wicri:noRegion>Giessen</wicri:noRegion>
<wicri:noRegion>Giessen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fahrentrapp, Johannes" sort="Fahrentrapp, Johannes" uniqKey="Fahrentrapp J" first="Johannes" last="Fahrentrapp">Johannes Fahrentrapp</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research Group for Viticulture, Zurich University of Applied Sciences, Wädenswil, Switzerland. johannes.fahrentrapp@zhaw.ch.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Research Group for Viticulture, Zurich University of Applied Sciences, Wädenswil</wicri:regionArea>
<wicri:noRegion>Wädenswil</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28743967</idno>
<idno type="pmid">28743967</idno>
<idno type="doi">10.1038/s41598-017-04792-5</idno>
<idno type="pmc">PMC5526865</idno>
<idno type="wicri:Area/Main/Corpus">000939</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000939</idno>
<idno type="wicri:Area/Main/Curation">000939</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000939</idno>
<idno type="wicri:Area/Main/Exploration">000939</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Pathogen recognition in compatible plant-microbe interactions.</title>
<author>
<name sortKey="Rezzonico, Fabio" sort="Rezzonico, Fabio" uniqKey="Rezzonico F" first="Fabio" last="Rezzonico">Fabio Rezzonico</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research Group Environmental Genomics and Systems Biology, Zurich University of Applied Sciences, Wädenswil, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Research Group Environmental Genomics and Systems Biology, Zurich University of Applied Sciences, Wädenswil</wicri:regionArea>
<wicri:noRegion>Wädenswil</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rupp, Oliver" sort="Rupp, Oliver" uniqKey="Rupp O" first="Oliver" last="Rupp">Oliver Rupp</name>
<affiliation wicri:level="1">
<nlm:affiliation>Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen</wicri:regionArea>
<wicri:noRegion>Giessen</wicri:noRegion>
<wicri:noRegion>Giessen</wicri:noRegion>
<wicri:noRegion>Giessen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fahrentrapp, Johannes" sort="Fahrentrapp, Johannes" uniqKey="Fahrentrapp J" first="Johannes" last="Fahrentrapp">Johannes Fahrentrapp</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research Group for Viticulture, Zurich University of Applied Sciences, Wädenswil, Switzerland. johannes.fahrentrapp@zhaw.ch.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Research Group for Viticulture, Zurich University of Applied Sciences, Wädenswil</wicri:regionArea>
<wicri:noRegion>Wädenswil</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bayes Theorem (MeSH)</term>
<term>Botrytis (pathogenicity)</term>
<term>Computer Simulation (MeSH)</term>
<term>Gene Expression Profiling (methods)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>High-Throughput Nucleotide Sequencing (MeSH)</term>
<term>Host-Pathogen Interactions (MeSH)</term>
<term>Lycopersicon esculentum (genetics)</term>
<term>Lycopersicon esculentum (microbiology)</term>
<term>Phytophthora infestans (pathogenicity)</term>
<term>Plant Diseases (genetics)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Leaves (microbiology)</term>
<term>Plant Proteins (genetics)</term>
<term>Saccharomycetales (pathogenicity)</term>
<term>Species Specificity (MeSH)</term>
<term>Whole Exome Sequencing (methods)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (méthodes)</term>
<term>Botrytis (pathogénicité)</term>
<term>Feuilles de plante (génétique)</term>
<term>Feuilles de plante (microbiologie)</term>
<term>Interactions hôte-pathogène (MeSH)</term>
<term>Lycopersicon esculentum (génétique)</term>
<term>Lycopersicon esculentum (microbiologie)</term>
<term>Maladies des plantes (génétique)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Phytophthora infestans (pathogénicité)</term>
<term>Protéines végétales (génétique)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Saccharomycetales (pathogénicité)</term>
<term>Simulation numérique (MeSH)</term>
<term>Spécificité d'espèce (MeSH)</term>
<term>Séquençage de l'exome entier (méthodes)</term>
<term>Séquençage nucléotidique à haut débit (MeSH)</term>
<term>Théorème de Bayes (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Lycopersicon esculentum</term>
<term>Plant Diseases</term>
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Lycopersicon esculentum</term>
<term>Maladies des plantes</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Gene Expression Profiling</term>
<term>Whole Exome Sequencing</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Lycopersicon esculentum</term>
<term>Maladies des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Lycopersicon esculentum</term>
<term>Plant Diseases</term>
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Séquençage de l'exome entier</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Botrytis</term>
<term>Phytophthora infestans</term>
<term>Saccharomycetales</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Botrytis</term>
<term>Phytophthora infestans</term>
<term>Saccharomycetales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Bayes Theorem</term>
<term>Computer Simulation</term>
<term>Gene Expression Regulation, Plant</term>
<term>High-Throughput Nucleotide Sequencing</term>
<term>Host-Pathogen Interactions</term>
<term>Species Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Interactions hôte-pathogène</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Simulation numérique</term>
<term>Spécificité d'espèce</term>
<term>Séquençage nucléotidique à haut débit</term>
<term>Théorème de Bayes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Microbial infections in plant leaves remain a major challenge in agriculture. Hence an understanding of disease mechanisms at the molecular level is of paramount importance for identifying possible intervention points for their control. Whole-transcriptome changes during early disease stages in susceptible plant species are less well-documented than those of resistant ones. This study focuses on the differential transcriptional changes at 24 hours post inoculation (hpi) in tomato leaflets affected by three pathogens: (1) Phytophthora infestans, (2) Botrytis cinerea, and (3) Oidium neolycopersici. Grey mould (B. cinerea) was the disease that had progressed the most by 24 hpi, both in terms of visible symptoms as well as differential gene expression. By means of RNA-seq, we identified 50 differentially expressed tomato genes specifically induced by B. cinerea infection and 18 specifically induced by P. infestans infection at 24 hpi. Additionally, a set of 63 genes were differentially expressed during all three diseases when compared by a Bayesian approach to their respective mock infections. And Gene expression patterns were found to also depend on the inoculation technique. These findings suggest a specific and distinct transcriptional response in plant leaf tissue in reaction to B. cinerea and P. infestans invasion at 24 hpi, indicating that plants may recognize the attacking pathogen.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28743967</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>02</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>02</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-2322</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2017</Year>
<Month>07</Month>
<Day>25</Day>
</PubDate>
</JournalIssue>
<Title>Scientific reports</Title>
<ISOAbbreviation>Sci Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Pathogen recognition in compatible plant-microbe interactions.</ArticleTitle>
<Pagination>
<MedlinePgn>6383</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s41598-017-04792-5</ELocationID>
<Abstract>
<AbstractText>Microbial infections in plant leaves remain a major challenge in agriculture. Hence an understanding of disease mechanisms at the molecular level is of paramount importance for identifying possible intervention points for their control. Whole-transcriptome changes during early disease stages in susceptible plant species are less well-documented than those of resistant ones. This study focuses on the differential transcriptional changes at 24 hours post inoculation (hpi) in tomato leaflets affected by three pathogens: (1) Phytophthora infestans, (2) Botrytis cinerea, and (3) Oidium neolycopersici. Grey mould (B. cinerea) was the disease that had progressed the most by 24 hpi, both in terms of visible symptoms as well as differential gene expression. By means of RNA-seq, we identified 50 differentially expressed tomato genes specifically induced by B. cinerea infection and 18 specifically induced by P. infestans infection at 24 hpi. Additionally, a set of 63 genes were differentially expressed during all three diseases when compared by a Bayesian approach to their respective mock infections. And Gene expression patterns were found to also depend on the inoculation technique. These findings suggest a specific and distinct transcriptional response in plant leaf tissue in reaction to B. cinerea and P. infestans invasion at 24 hpi, indicating that plants may recognize the attacking pathogen.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rezzonico</LastName>
<ForeName>Fabio</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Research Group Environmental Genomics and Systems Biology, Zurich University of Applied Sciences, Wädenswil, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rupp</LastName>
<ForeName>Oliver</ForeName>
<Initials>O</Initials>
<AffiliationInfo>
<Affiliation>Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fahrentrapp</LastName>
<ForeName>Johannes</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">0000-0003-4259-6634</Identifier>
<AffiliationInfo>
<Affiliation>Research Group for Viticulture, Zurich University of Applied Sciences, Wädenswil, Switzerland. johannes.fahrentrapp@zhaw.ch.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>07</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Sci Rep</MedlineTA>
<NlmUniqueID>101563288</NlmUniqueID>
<ISSNLinking>2045-2322</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001499" MajorTopicYN="N">Bayes Theorem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020171" MajorTopicYN="N">Botrytis</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059014" MajorTopicYN="N">High-Throughput Nucleotide Sequencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018551" MajorTopicYN="N">Lycopersicon esculentum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055750" MajorTopicYN="N">Phytophthora infestans</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004718" MajorTopicYN="N">Saccharomycetales</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000073359" MajorTopicYN="N">Whole Exome Sequencing</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>02</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>05</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>7</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>7</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>2</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28743967</ArticleId>
<ArticleId IdType="doi">10.1038/s41598-017-04792-5</ArticleId>
<ArticleId IdType="pii">10.1038/s41598-017-04792-5</ArticleId>
<ArticleId IdType="pmc">PMC5526865</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Plant Pathol. 2012 Jan;13(1):1-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21726395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2001 Nov 1;2(6):303-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20573019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2012 Apr;39(4):4039-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21785916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2012 Jun;287(6):495-513</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22570076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2016 May;67(11):3339-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27099374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Sep 17;461(7262):393-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19741609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2012 Apr;53(4):659-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22368074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Mar 04;9(4):357-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22388286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Jan 1;26(1):139-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19910308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Jun 20;8(6):e67467</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23818978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2006 Apr;11(4):184-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16531096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2013 Apr 15;29(8):1035-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23428641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2010 Nov;100(11):1185-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20932167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Dec 24;6:1173</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26734053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2002 Aug;5(4):325-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12179966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2011 Aug 04;12:323</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21816040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Apr 15;28(8):1086-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22368243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Jan;43(Database issue):D447-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25352553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2011 Aug;7(8):e1002230</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21876677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):9166-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26139525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Jan;29(2):193-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11862948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 Jan 31;6(1):e14639</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21305057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jan;155(1):464-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21030507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2005;43:205-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16078883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2008;9(2):210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18304383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2009 Feb;4(2):86-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19649178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Apr 06;7:380</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27579028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2014;15(10):492</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25323444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jul 8;44(W1):W83-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27098042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomes. 2014 Mar 28;2(2):169-190</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28250376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 Feb 05;16:39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25652024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lett Appl Microbiol. 2010 Dec;51(6):603-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21039667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Aug;144(4):1863-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17573540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W193-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17478515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Sep;24(9):3530-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23023172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jan 1;31(1):258-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12519996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Biol. 2010 Nov-Dec;114(11-12):917-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21036335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2016 Jan;17 (1):42-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25808779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2008 Mar;98(3):270-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18944077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2014 Jan 17;14:32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24438198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2005 Jan 1;6(1):85-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20565641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Mar;22(3):245-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19245319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Aug;40(15):e115</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22730293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2016 Apr 1;472(2):353-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26923071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 Apr 08;16:272</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25886179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(2):e31526</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22328937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2006 May;11(5):247-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16616579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2004 Jul;55(5):663-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15604708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Aug 27;10(8):e0136499</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26313760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 Oct;20(2):207-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10571880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Dec 1;20(23):3255-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17158744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2009 Jan;14(1):37-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19054707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Jan 15;23(2):257-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17098774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2014 Jan-Feb;32(1):170-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24211472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Jun 12;20(9):1464-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14962934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2015 Dec;89(6):589-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26456092</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
<li>Suisse</li>
</country>
</list>
<tree>
<country name="Suisse">
<noRegion>
<name sortKey="Rezzonico, Fabio" sort="Rezzonico, Fabio" uniqKey="Rezzonico F" first="Fabio" last="Rezzonico">Fabio Rezzonico</name>
</noRegion>
<name sortKey="Fahrentrapp, Johannes" sort="Fahrentrapp, Johannes" uniqKey="Fahrentrapp J" first="Johannes" last="Fahrentrapp">Johannes Fahrentrapp</name>
</country>
<country name="Allemagne">
<noRegion>
<name sortKey="Rupp, Oliver" sort="Rupp, Oliver" uniqKey="Rupp O" first="Oliver" last="Rupp">Oliver Rupp</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000950 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000950 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28743967
   |texte=   Pathogen recognition in compatible plant-microbe interactions.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28743967" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024